

 1

Detecting key features in popular music: case study –
voice detection

Rui Nóbrega
CITI, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa,
2829-516 Caparica, Portugal

rui.nobrega@di.fct.unl.pt
nº 29600

ABSTRACT
Detecting distinct features in modern pop music is an
important problem that can have significant applications in
areas such as multimedia entertainment. They can be used,
for example, to give a visually coherent representation of
the sound. The work developed for this project is meant to
be used in the context of a multimedia, multi-touch game
where the user has to perform simple tasks at the rhythm of
the music. The ultimate goal of this project is to make the
creation of visual content automatic using as input, features
extracted from the music sound. In this work special focus
will be given to the detection of voice segments inside
music songs. The solution presented extracts the MFCC’s
of the sound and uses a Hidden Markov Model to infer if
the sound has voice or not. Using this method some results
are presented with the best parameters to extract this
feature.

Author Keywords
Singing voice detection, features detection, music game,
visual sound synchronization, MFCC, Hidden Markov
Model

INTRODUCTION
The sound component plays a vital part in today’s
interactive games and applications. Entertainment
applications with good graphics lose their appeal when the
sound is not present or is poorly integrated. Having this in
mind a prototype game was built where the user has to do
multi-touch gestures as shown in examples. The application
has background music and the examples appear when
there’s a beat, a voice starts singing or the guitar starts. This
synchronization between the examples and the music is
currently done manually. It would be interesting to make
this task automatic for any song. To automate this it is
necessary to detect several features from the sound such as
voice, rhythm, instruments playing, loudness or pitch and
see how they change through time.

The main goal of this work is to detect when someone is
singing in a song. Specific voice detection in music is not a
widely studied subject, but most of its ideas come from
speech recognition topics which is a well established
research area.

Voice segment detection has applications in singer
identification, music information retrieval, music
transcription or karaoke lyric alignment.

The human voice ranges from 80 Hz to 400 Hz for male
and female speech[5]. In singing, the voice can achieve
1400 Hz. The initial research was done in female voices, in
pop-rock songs using short music segments with only one
voice at a time.

A prototype was built using speech recognition strategies to
detect voice segments in small music samples. The output
of the application is the set of ranges where voice was
detected. The application uses a training algorithm to detect
the segments. To train the application a set of sounds was
gathered, half of them contain voices. Mel-Frequency
Cepstrum Coefficients (MFCC’s) are extracted from these
sounds and used to train a Hidden Markov Model (HMM).
This model is then used to classify consecutive small blocks
of the sound. To evaluate the solution the detected blocks
were compared with previously manually classified songs.

In the next section there is some literature review. Next is
the description of the solution and in the end the results are
presented and discussed.

RELATED WORK
This project was born from the experiences described in [8]
where several prototypes where created to explore multi-
touch interaction. One of the prototypes is the music game
described in the introduction. This game is inspired in the
online flash game UpBeat[14] where the player has to
follow sequences of movements according to specific
rhythms. Another inspiring work is the KeepOn[3] robot
which can detected the rhythm of the song and dance to it.

There is extensive research in features detection and audio
classification, as an example, in [2] it is presented a method
to detect harmonic change in musical audio based on pitch
differences between two consecutive sound frames. Several
features sets for audio classification are summarized in [1]
including what the authors call Low-level signal parameters
such as zero-crossing rate, band energy or pitch; MFCC;
Psycoacoustic features such as roughness, loudness or
sharpness and finally Auditory filterbank temporal

envelopes. These features are used to train classifiers to
detect a wide range of sounds.

Papers [4,5,9] present strategies to detect singing in songs.
In [4] four acoustic features are defined and analyzed:
vibrato, harmonic, timbre and cepstral coefficient
computation such as MFCC. The first three features are
used essentially as a cue for where is it more likely to be a
voice segment. The MFCC of voice classified songs are
used to train a HMM. The final model detects vocal
segments in songs which are then inserted back in the
HMM. This work presents a generic model and some ideas
but lacks a complete solution description. One of its main
contributions are its experiment results which will be used
in the evaluation section.

Using a very similar strategy paper [9] presents several
experiments in singing voice detection but with different
cepstral coefficients. In [4] experiments where made with
Octave Frequency Cepstral Coefficients (OFCC) and
MFCC, with no major differences in the two methods (80%
success), but slightly better results when combined (83%
success). In [9], four types of coefficients were tested; the
Harmonic Attenuated Log Frequency Power Coefficients
(HA-LFPC) obtained the best results (86.7%). These
coefficients are obtained by using a triangular bandpass
filter on the spectrogram which reduces harmonic sounds.
This way non-vocal sounds will have much less energy than
vocal sounds. It must be stated that the authors do not
specify what type of music instruments are being used in
their tests, probably most of them have harmonic sounds,
thus making this method have a larger success rate. In the
same tests MFCC’s obtained an average 81.3% of success.

A complete solution to separate singing voice from music is
presented in [5]. This is actually a harder problem than just
voice detection. Their system has three steps, first the voice
segments are detected, then the predominant pitch is
detected and finally the voice is separated from the rest of
the music. For the purpose of this work the only important
part is the voice detection.

The singing voice detection has several stages. First of all a
spectral change detector selects several segments of audio
where the energy has significant spectral changes between
frames. After the input is portioned it is classified as vocal
or not by a HMM likelihood function. This method appears
to be very similar to the ones presented in [4,9] but has
additional details about implementation issues. For this
reason, this was the main paper followed in this project.
The method proposed has a HMM with two classes cv and
cnv,one for vocal and other for non-vocal sounds. Each class
is trained separately, cv with voice sounds and cnv with
music sounds. For each sound the MFCC are used as the
feature vector. The classes are trained using these MFCC as
input for the HMM with gaussian mixture model (GMM).
To classify a given sound segment the HMM likelihood
function value is obtained for each class. It will be
classified as a voice segment if the likelihood of cv is
higher than the one of cnv. The success rate of this method is
around 79%. Note that the evaluation process used the same
samples that served as input for the training of the HMM,
this might have produced biased results. Papers [4,9] do not
state the origin of the samples.

Additional related work about MFCC can be found in
[12,13] and more about HMM can be found in [7,10,11].
These topics will be further detailed in the next sections.

TRAINING ALGORITHM
Following the models of [4,9] and the implementation
described in [5] a system was developed which uses two
HMM for voice and non-voice music segments. The
MFCCs of two groups of training sounds are taken as input
for the HMM. Final segment testing is done comparing the
log-likelihood probability of the two HMM. The overall
solution can be seen in figure 1.

MEL-FREQUENCY CEPSTRUM COEFICIENTS
MFCCs are the coefficients that capture the perceptual
information of sound. They have many application in sound
retrieval in genre classification, audio similarity measure or
speech recognition.

The MFCCs are based on the mel-sale which is a perceptual
scale of pitches. This scale is based on the fact that the
correlation between human perceive pitch distance between
two sounds is not linear in frequency. It is easier for a
person to distinguish two low frequency sounds such as
300Hz and 400Hz than it is to distinguish between 6000Hz
and 6100Hz. The mel-scale is a logarithmic function which
can be seen in figure 2.

MFCC

HMM
Vocal

Voice Samples

MFCC

HMM
Non-Vocal

No Voice Samples

Testing Music Sample

MFCC

Segmenting

Prob(Vocal > Non-Vocal?)

Figure 1. System solution diagram. It initially
trains two HMMs and uses them to classify music

samples

 3

To extract the MFCC of a sound segment several steps have
to be done. In [12] several implementations of MFCC are
explained, tested and compared. In this work the
implementation used was the Auditory Toolbox by Slaney
[13]. The most common extraction methods follow these
steps:

1. Separation of the signal in several frames.

2. Find the Fast Fourier Tranform(FFT) of the frame.

3. Multiply the frequencies by a Mel filter bank which is
composed of log-spaced triangular overlapping
windows as seen in figure 3.

4. Take the log of the powers at each mel frequency.(fig 4)

5. Find the Discreat Cosine Transform (DCT) to the result
to reduce dimensionality.

6. The MFCCs are the amplitudes of the resulting
spectrum.

The Mel Filter bank used in the Auditory Toolbox is
constructed using 13 linearly-spaced filters (133.33Hz
between center frequencies,) followed by 27 log-spaced
filters (separated by a factor of 1.0711703 in frequency).
The center frequencies of the filter bank triangles are
computed by approximating the Mel scale with:

⎟
⎠
⎞

⎜
⎝
⎛ += 1

700
log2595 10

fφ

The amplitude of the FFT bin is then combined with the
triangular filters seen in figure 3.

The final result is for each frame, 13 coefficients, which can
be drawn consecutively as seen in figure 4, in a cepstrum.
The top row of the cepstrum, known as C0 has a different
aspect because is a function of the power in the signal and
has a negative value. The other coefficients, C1-C12, have
values close to 0. These are the values that will be used in
the HMM.

HIDDEN MARKOV MODEL
Hidden Markov Model is a type of stochastic signal model
which has many applications such as recognition of speech,
handwriting or musical score. In this work it will be used
for singing voice recognition. Russel and Norvig in their
book [11] dedicate an entire chapter to statistical methods
and probabilistic reasoning over time. The chapter explains
thoroughly how HMM work and relates them with
Bayesian networks. It also has some comprehensible
algorithms that implement the model.

Another important effort is the work done by Rabiner in
[10] where a complete tutorial for HMMs is presented and
some applications of them to speech recognition are
discussed. He starts by reviewing the theory of Markov
chains and then builds several examples to extend the ideas
to hidden Markov models. The main focus of the work is to
explain three problems of the HMM design: the evaluation

Figure 2. Mel scale.
Figure 3. Auditory Toolbox implementation of the

Mel filter bank [12].

Figure 4. Mel-Frequency Cepstral Coefficients can
be seen in the third graph.

of the probability (likelihood) of a sequence of observations
given a specific HMM; the determination of a best
sequence of model states; and the adjustment of model
parameters to best account for the observed signal.

To better understand HMM it is necessary to first review
the Markov chains for discrete Markov processes. A
Markov model is composed of a oriented graph of N states
where all states are connected with a transition matrix A and
there is an initial state I at t=1. Has an example consider a
3-state Markov model for weather. Imagining the states are:

• State 1: rain

• State 2: cloudy

• State 3: sunny

Considering the transition probability from one state to the
other to be the 3 by 3 matrix A:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

8.01.01.0
2.06.02.0
3.03.04.0

}{ ijaA

This means that the probability of having a cloudy (state 2)
event after a rain (state 1) event is:

3.012 =a

Given that the weather on day 1(t=1) is sunny (state 3), with
the Markov model the we can ask the following question:
What is the probability that the weather for the next 7 days
will be “sun-sun-rain-rain-sun-cloudy-sun”? This
corresponds to an observation sequence O:

7,...,2,1},,,,,,,{ 3231133 == tSSSSSSSO

This translates into the following probability:

P(O|Model) = P(S3, S3, S1, S1, S3, S2, S3 | Model)

 = P(S3) · P(S3| S3) · P(S3| S3) · P(S1| S3)

 · P(S1| S3) · P(S3| S3) · P(S2| S3) · P(S3| S3)

 = 1· 0.8 · 0.8 · 0.1 · 0.4 · 0.3 · 0.1 · 0.2

 = 1.536 ×10-4

The above example was a simple Markov model in which
each state corresponded to a physical observable event.
This may not be always possible in all problems. In a
regular Markov model, the state is directly visible to the
observer, and therefore the state transition probabilities are
the only parameters. In a hidden Markov model, the state is
not directly visible; the only thing that the observer sees is
the sequence of observations produced by a hidden process.

As an example of a HMM consider a coin tossing example.
In this scenario we have a room with a curtain. The
observer sits on one side of the curtain and another person
is behind the curtain tossing one or multiple coins. He will

tell the result of each coin flip. The observer never knows
how many coins are being tossed. He only knows the
sequence O:

},...,,{ 21 nOOOO =

“heads-heads-tails-tails-tails-heads-tails-tails-heads…”

Given the above scenario, the problem is how to build an
HMM to explain the observed sequence of heads and tails.
Since the observer doesn’t know how many coins are being
tossed, he doesn’t know how many states there is. For
example, for 2 coins, there would be 4 states corresponding
to the all the combinations of heads and tails (22). In a
HMM the main problems are deciding what the states in the
model correspond to and how many states should be in the
model.

In all these examples we considered only the case where the
observations where discrete symbols from a finite alphabet.
In the coin tossing problem the symbols where just heads
and tails. This is not always true in all problems. In some
applications, such as signal processing, the observations are
continuous. Although it is possible to quantify the signal it
is better to describe it using continuous observation
densities. One of the most common are the Gaussian
Mixture model, where the probability of each state can be
described as a set of M Gaussian probability density
functions.

One important factor about HMM is that they can be
“trained”. Instead of giving a transition matrix A it is
possible to infer A from a set of observed states. This is
done iteratively with an algorithm that tries to optimize the
parameters of the model until there is a combination that
best describes the observed pattern. This last property is
very important because it is possible to train a HMM with a
set of voice sounds, and then use the model obtained to
detected if another sound has voice.

This was just a glimpse of what HMMs can do. For
implementation details and further reading please refer to
[10,11]. The HMM Toolbox [7] is a complete
implementation of HMM with many related algorithms and
solutions.

SOLUTION
To adapt HMM for singing voice recognition a prototype
was implemented using MatLab following the ideas
described in [5] (see related work). Two classes of HMM
were created, one for singing voice and other for instrument
only sound. Following the diagram in figure 1 there were
several steps for the implementation.

The first step was to create a database of sounds. Several
two second samples were taken from different songs and
from different artists. Half of the samples had voice. The
samples had a quality of 44100Hz, 16 bits, Mono. The
entire algorithm works only on a single channel but would
be trivial to replicate it for stereo sound.

 5

After reading the samples to the system, the second step
was to divide the samples in small frames and convert them
to MFCC vectors using the Auditory Toolbox[13]. The
samples were divided in 100 frames per second. For each
frame a vector of 13 Mel-frequency cepstral coefficients
was obtained, thus resulting in a matrix D of 13 by 200, for
each two second sample.

The third step was the training of the two HMMs using the
MFCCs. To implement the HMMs the prototype uses the
already referred HMM Toolbox [7]. The HMMs were
defined using as input D. Each column of D is considered
an observation and is composed by thirteen coefficients.
Since sound is a continuous signal the possible values of the
coefficients are not discreet symbols of a finite alphabet, for
that reason a Gaussian Mixture model with M mixtures to
represent Q possible states. M and Q are left open as
parameters. Finally the HMM is generated using an
approximation process described in the last section with
1000 iterations.

Having the two HMMs constructed the fourth step is to
evaluate a music and detect voice segments. The main idea
is to read the music and convert it into MFCC vectors. Then
take the resulting 13 by n matrix and divide it into segments
of size S (the S used was 40 in all tests). Then use this data
to compute the likelihood probability of it belonging to the
vocal HMM class or non vocal. The segment will be
classified as belonging to the class with higher probability.

EVATUATION AND RESULTS
To evaluate the method several samples were manually
classified with voice and no voice segments. To do this in

real time, a small application was built where a person
would listen to a song and would push a button whenever
the singer started and ended singing. This is a very fast
method to obtain classified data although it has some errors
and possible delays associated with the person’s reaction
time. Using the classified songs it was possible to make
comparisons between the proposed algorithm results and
the manual result resulting in the graph seen in figure 5.

Several tests where made changing several parameters of
the HMMs, first of all the HMMs where trained using only
samples from the same band of the music that it would be
tested. Then they were trained using all the samples. Finally
the parameters: M the number of Gaussian mixtures and Q
the number of states, were tested with different values. The
success rate of each approach can be seen in table 1.

% Q

Train Samples M 1 4 8 16

Same band
from test

2 82.4 82.3 81.2 80.8

10 83.1 82.8 77 76.6

All bands
2 80.3 80.4 81.4 76.4

10 81 80.1 78.1 79.4

Table 1. Success rate with different parameters.

The results had a variation of around ±5%. The tests had a
slightly better result when the training set is composed of
samples from the songs being tested. The other group of
samples also had samples from the song being played but

Figure 5. Singing voice classification. The dark areas in the second graph represent
voice detect by the algorithm. The third graph shows a manual voice classification

done by a person. The last graph shows the differences. In this 60 second example the
success rate was 90%.

had also more different music bands. For this reason the
transition probabilities probably become more diluted in the
HMM resulting in worst results. The best results are
obtained using fewer states and fewer Gaussian Mixtures.
There are not large differences between the results but it is
safe to say that using between 1 and 4 states with 2 to 10
Gaussian Mixtures is a good parameter solution.

CONCLUSION
With this work it is possible to conclude that a solution
based on HMM using MFCCs as classifiers is a valid
answer to detect singing voice in music. The results show a
high degree of success comparing them with similar results
from other authors (around 80% for [4] and [5]). This
implementation may need additional tuning to make
detections in other types of music but taking into account
the scope defined in the introduction the results were
satisfactory.

For the future it would be necessary to extend the
evaluation with a larger set of samples to train the models
and to test the system. One idea would be to feed the results
back into the model when the degree of confidence in the
system starts getting higher. To improve the system it
would be necessary to cross the detected segments using
HMMs with other types of detectors based on energy, pitch
or harmonic frequency.

Finally using the detected singing sections it is possible to
build interactive multimedia applications that react to a
given music, as said in the example described in the
introduction.

ACKNOLEDGMENTS
The author would like to thank to everyone at IMG for all
the support and input. Additional acknowledgments go to
CITI at Faculdade de Ciências e Tecnologias da
Universidade Nova de Lisboa.

REFERENCES
1. Breebaart, J., McKinney, M.: Features for audio

classification. In Proc. SOIA2002, Philips Symposium
on Intelligent Algorithms, 2002.

2. Harte, C., Sandler, M., and Gasser, M.: Detecting
harmonic change in musical audio. In Proceedings of
the 1st ACM Workshop on Audio and Music Computing
Multimedia ,AMCMM '06, 2006

3. Keep On robot, 2009
http://beatbots.org/,
http://www.youtube.com/watch?v=3g-yrjh58ms

4. Khine, S.Z.K., Tin Lay New, Haizhou Li,: Singing voice
detection in pop songs using co-training algorithm, . In
IEEE International Conference on Acoustics, Speech
and Signal Processing, 2008. ICASSP 2008, 2008

5. Li, Y., Wang, D.: Separation of Singing Voice From
Music Accompaniment for Monaural Recordings,
In Audio, Speech, and Language Processing, IEEE
Transactions on , 2007

6. Min Xu, Maddage, N.C.: Changsheng Xu; Kankanhalli,
M.; Qi Tian, Creating audio keywords for event
detection in soccer video,In Multimedia and Expo.
ICME '03, 2003

7. Murphy, K., HMM Toolbox for Matlab, 2009
http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.h
tml

8. Nóbrega, R., Sabino, A., Rodrigues, A., and Correia, N.:
Flood Emergency Interaction and Visualization System.
In Proc. of Visual information Systems: Web-Based
Visual information Search and
Management ,VISUAL’08,2008

9. Nwe, T. L., Shenoy, A., Wang, Y.: Singing voice
detection in popular music. In Proceedings of the 12th
Annual ACM international Conference on Multimedia.
MULTIMEDIA '04, 2004

10. Rabiner, L. R.: A tutorial on hidden Markov models and
selected applications in speech recognition. In Readings
in Speech Recognition, A. Waibel and K. Lee, Eds.
Morgan Kaufmann Publishers, San Francisco, 1990

11. Russel, S., Norvig, P., Artificial Inteligence: A Modern
Approach, 2nd Edition, Prentice Hall, Cap15,
International Edition, 2003

12. Sigurdsson, S., Petersen,K.B., Lehn-Schiøler, T.: Mel
Frequency Cepstral Coefficients: An Evaluation of
Robustness of MP3 Encoded Music, In Proceedings of
the Seventh International Conference on Music
Information Retrieval. ISMIR’06, 2006

13. Slaney, M., Auditory Toolbox, 2009
http://cobweb.ecn.purdue.edu/~malcolm/interval/1998-
010/

14. Upbeat, music game,2009
http://www.primarygames.com/arcade/upbeat/

