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ABSTRACT 
Detecting distinct features in modern pop music is an 
important problem that can have significant applications in 
areas such as multimedia entertainment. They can be used, 
for example, to give a visually coherent representation of 
the sound. The work developed for this project is meant to 
be used in the context of a multimedia, multi-touch game 
where the user has to perform simple tasks at the rhythm of 
the music. The ultimate goal of this project is to make the 
creation of visual content automatic using as input, features 
extracted from the music sound. In this work special focus 
will be given to the detection of voice segments inside 
music songs. The solution presented extracts the MFCC’s 
of the sound and uses a Hidden Markov Model to infer if 
the sound has voice or not. Using this method some results 
are presented with the best parameters to extract this 
feature. 
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INTRODUCTION 
The sound component plays a vital part in today’s 
interactive games and applications. Entertainment 
applications with good graphics lose their appeal when the 
sound is not present or is poorly integrated. Having this in 
mind a prototype game was built where the user has to do 
multi-touch gestures as shown in examples. The application 
has background music and the examples appear when 
there’s a beat, a voice starts singing or the guitar starts. This 
synchronization between the examples and the music is 
currently done manually. It would be interesting to make 
this task automatic for any song. To automate this it is 
necessary to detect several features from the sound such as 
voice, rhythm, instruments playing, loudness or pitch and 
see how they change through time.  

The main goal of this work is to detect when someone is 
singing in a song. Specific voice detection in music is not a 
widely studied subject, but most of its ideas come from 
speech recognition topics which is a well established 
research area.  

Voice segment detection has applications in singer 
identification, music information retrieval, music 
transcription or karaoke lyric alignment. 

The human voice ranges from 80 Hz to 400 Hz for male 
and female speech[5]. In singing, the voice can achieve 
1400 Hz. The initial research was done in female voices, in 
pop-rock songs using short music segments with only one 
voice at a time. 

A prototype was built using speech recognition strategies to 
detect voice segments in small music samples. The output 
of the application is the set of ranges where voice was 
detected. The application uses a training algorithm to detect 
the segments. To train the application a set of sounds was 
gathered, half of them contain voices. Mel-Frequency 
Cepstrum Coefficients (MFCC’s) are extracted from these 
sounds and used to train a Hidden Markov Model (HMM). 
This model is then used to classify consecutive small blocks 
of the sound. To evaluate the solution the detected blocks 
were compared with previously manually classified songs.   

In the next section there is some literature review. Next is 
the description of the solution and in the end the results are 
presented and discussed. 

RELATED WORK 
This project was born from the experiences described in [8] 
where several prototypes where created to explore multi-
touch interaction. One of the prototypes is the music game 
described in the introduction. This game is inspired in the 
online flash game UpBeat[14] where the player  has to 
follow sequences of movements according to specific 
rhythms. Another inspiring work is the KeepOn[3] robot 
which can detected the rhythm of the song and dance to it.  

There is extensive research in features detection and audio 
classification, as an example, in [2] it is presented a method 
to detect harmonic change in musical audio based on pitch 
differences between two consecutive sound frames. Several 
features sets for audio classification are summarized in [1] 
including what the authors call Low-level signal parameters 
such as zero-crossing rate, band energy or pitch; MFCC; 
Psycoacoustic features such as roughness, loudness or 
sharpness and finally Auditory filterbank temporal 



 

 

envelopes. These features are used to train classifiers to 
detect a wide range of sounds.  

Papers [4,5,9] present strategies to detect singing in songs. 
In [4] four acoustic features are defined and analyzed: 
vibrato, harmonic, timbre and cepstral coefficient 
computation such as MFCC. The first three features are 
used essentially as a cue for where is it more likely to be a 
voice segment. The MFCC of voice classified songs are 
used to train a HMM. The final model detects vocal 
segments in songs which are then inserted back in the 
HMM. This work presents a generic model and some ideas 
but lacks a complete solution description. One of its main 
contributions are its experiment results which will be used 
in the evaluation section.  

Using a very similar strategy paper [9] presents several 
experiments in singing voice detection but with different 
cepstral coefficients. In [4] experiments where made with 
Octave Frequency Cepstral Coefficients (OFCC) and 
MFCC, with no major differences in the two methods (80% 
success), but slightly better results when combined (83% 
success).  In [9], four types of coefficients were tested; the 
Harmonic Attenuated Log Frequency Power Coefficients 
(HA-LFPC) obtained the best results (86.7%). These 
coefficients are obtained by using a triangular bandpass 
filter on the spectrogram which reduces harmonic sounds. 
This way non-vocal sounds will have much less energy than 
vocal sounds. It must be stated that the authors do not 
specify what type of music instruments are being used in 
their tests, probably most of them have harmonic sounds, 
thus making this method have a larger success rate. In the 
same tests MFCC’s obtained an average 81.3% of success. 

A complete solution to separate singing voice from music is 
presented in [5]. This is actually a harder problem than just 
voice detection. Their system has three steps, first the voice 
segments are detected, then the predominant pitch is 
detected and finally the voice is separated from the rest of 
the music. For the purpose of this work the only important 
part is the voice detection.  

The singing voice detection has several stages. First of all a 
spectral change detector selects several segments of audio 
where the energy has significant spectral changes between 
frames. After the input is portioned it is classified as vocal 
or not by a HMM likelihood function. This method appears 
to be very similar to the ones presented in [4,9] but has 
additional details about implementation issues. For this 
reason, this was the main paper followed in this project. 
The method proposed has a HMM with two classes cv and 
cnv,one for vocal and other for non-vocal sounds. Each class 
is trained separately, cv with voice sounds and cnv with 
music sounds. For each sound the MFCC are used as the 
feature vector. The classes are trained using these MFCC as 
input for the HMM with gaussian mixture model (GMM). 
To classify a given sound segment the HMM likelihood 
function value is obtained for each class. It will be 
classified as a voice segment if the likelihood of  cv is 
higher than the one of cnv. The success rate of this method is 
around 79%. Note that the evaluation process used the same 
samples that served as input for the training of the HMM, 
this might have produced biased results. Papers [4,9] do not 
state the origin of the samples.  

Additional related work about MFCC can be found in 
[12,13] and more about HMM can be found in [7,10,11]. 
These topics will be further detailed in the next sections. 

TRAINING ALGORITHM 
Following the models of [4,9] and the implementation 
described in [5] a system was developed which uses two  
HMM for voice and non-voice music segments. The 
MFCCs of two groups of training sounds are taken as input 
for the HMM. Final segment testing is done comparing the 
log-likelihood probability of the two HMM.  The overall 
solution can be seen in figure 1.   

MEL-FREQUENCY CEPSTRUM COEFICIENTS  
MFCCs are the coefficients that capture the perceptual 
information of sound. They have many application in sound 
retrieval in genre classification, audio similarity measure or 
speech recognition.  

The MFCCs are based on the mel-sale which is a perceptual 
scale of pitches. This scale is based on the fact that the 
correlation between human perceive pitch distance between 
two sounds is not linear in frequency. It is easier for a 
person to distinguish two low frequency sounds such as 
300Hz and 400Hz than it is to distinguish between 6000Hz 
and 6100Hz.  The mel-scale is a logarithmic function which 
can be seen in figure 2. 

MFCC 
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Voice Samples 

MFCC 
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Testing Music Sample 

MFCC
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Figure 1. System solution diagram. It initially 
trains two HMMs and uses them to classify music 

samples 



 

 3

To extract the MFCC of a sound segment several steps have 
to be done. In [12] several implementations of MFCC are 
explained, tested and compared. In this work the 
implementation used was the Auditory Toolbox by Slaney 
[13].  The most common extraction methods follow these 
steps: 

1. Separation of the signal in several frames.  

2. Find the Fast Fourier Tranform(FFT) of the frame. 

3. Multiply the frequencies by a Mel filter bank which is 
composed of log-spaced triangular overlapping 
windows as seen in figure 3. 

4. Take the log of the powers at each mel frequency.(fig 4) 

5. Find the Discreat Cosine Transform (DCT) to the result 
to reduce dimensionality. 

6. The MFCCs are the amplitudes of the resulting 
spectrum. 

The Mel Filter bank used in the Auditory Toolbox is 
constructed using 13 linearly-spaced filters (133.33Hz 
between center frequencies,) followed by 27 log-spaced 
filters (separated by a factor of 1.0711703 in frequency). 
The center frequencies of the filter bank triangles are 
computed by approximating the Mel scale with: 

⎟
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⎞

⎜
⎝
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700
log2595 10

fφ  

The amplitude of the FFT bin is then combined with the 
triangular filters seen in figure 3.  

The final result is for each frame, 13 coefficients, which can 
be drawn consecutively as seen in figure 4, in a cepstrum. 
The top row of the cepstrum, known as C0 has a different 
aspect because is a function of the power in the signal and 
has a negative value. The other coefficients, C1-C12, have 
values close to 0. These are the values that will be used in 
the HMM. 

HIDDEN MARKOV MODEL  
Hidden Markov Model is a type of stochastic signal model 
which has many applications such as recognition of speech, 
handwriting or musical score. In this work it will be used 
for singing voice recognition. Russel and Norvig in their 
book [11] dedicate an entire chapter to statistical methods 
and probabilistic reasoning over time. The chapter explains 
thoroughly how HMM work and relates them with 
Bayesian networks. It also has some comprehensible 
algorithms that implement the model. 

Another important effort is the work done by Rabiner in 
[10] where a complete tutorial for HMMs is presented and 
some applications of them to speech recognition are 
discussed. He starts by reviewing the theory of Markov 
chains and then builds several examples to extend the ideas 
to hidden Markov models. The main focus of the work is to 
explain three problems of the HMM design: the evaluation 

Figure 2. Mel scale. 
Figure 3. Auditory Toolbox implementation of the 

Mel filter bank [12]. 

Figure 4. Mel-Frequency Cepstral Coefficients can 
be seen in the third graph. 



 

 

of the probability (likelihood) of a sequence of observations 
given a specific HMM; the determination of a best 
sequence of model states; and the adjustment of model 
parameters to best account for the observed signal. 

To better understand HMM it is necessary to first review 
the Markov chains for discrete Markov processes. A 
Markov model is composed of a oriented graph of N states 
where all states are connected with a transition matrix A and 
there is an initial state I at t=1. Has an example consider a 
3-state Markov model for weather. Imagining the states are: 

• State 1: rain 

• State 2: cloudy 

• State 3: sunny 

Considering the transition probability from one state to the 
other to be the 3 by 3 matrix A: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

8.01.01.0
2.06.02.0
3.03.04.0

}{ ijaA  

This means that the probability of having a cloudy (state 2) 
event after a rain (state 1) event is: 

3.012 =a  

Given that the weather on day 1(t=1) is sunny (state 3), with 
the Markov model the we can ask the following question: 
What is the probability that the weather for the next 7 days 
will be “sun-sun-rain-rain-sun-cloudy-sun”? This 
corresponds to an observation sequence O: 

7,...,2,1},,,,,,,{ 3231133 == tSSSSSSSO  

This translates into the following probability: 

P(O|Model) = P( S3, S3, S1, S1, S3, S2, S3 | Model) 

                    = P(S3) · P(S3| S3) · P(S3| S3) · P(S1| S3) 

                        · P(S1| S3) · P(S3| S3) · P(S2| S3) · P(S3| S3) 

                    = 1· 0.8 · 0.8 · 0.1 · 0.4 · 0.3 · 0.1 · 0.2 

                    = 1.536 ×10-4 

The above example was a simple Markov model in which 
each state corresponded to a physical observable event. 
This may not be always possible in all problems. In a 
regular Markov model, the state is directly visible to the 
observer, and therefore the state transition probabilities are 
the only parameters. In a hidden Markov model, the state is 
not directly visible; the only thing that the observer sees is 
the sequence of observations produced by a hidden process. 

As an example of a HMM consider a coin tossing example. 
In this scenario we have a room with a curtain. The 
observer sits on one side of the curtain and another person 
is behind the curtain tossing one or multiple coins. He will 

tell the result of each coin flip. The observer never knows 
how many coins are being tossed. He only knows the 
sequence O: 

},...,,{ 21 nOOOO =  

“heads-heads-tails-tails-tails-heads-tails-tails-heads…” 

Given the above scenario, the problem is how to build an 
HMM to explain the observed sequence of heads and tails. 
Since the observer doesn’t know how many coins are being 
tossed, he doesn’t know how many states there is. For 
example, for 2 coins, there would be 4 states corresponding 
to the all the combinations of heads and tails (22).  In a 
HMM the main problems are deciding what the states in the 
model correspond to and how many states should be in the 
model. 

In all these examples we considered only the case where the 
observations where discrete symbols from a finite alphabet. 
In the coin tossing problem the symbols where just heads 
and tails. This is not always true in all problems. In some 
applications, such as signal processing, the observations are 
continuous. Although it is possible to quantify the signal it 
is better to describe it using continuous observation 
densities. One of the most common are the Gaussian 
Mixture model, where the probability of each state can be 
described as a set of M Gaussian probability density 
functions. 

One important factor about HMM is that they can be 
“trained”. Instead of giving a transition matrix A it is 
possible to infer A from a set of observed states. This is 
done iteratively with an algorithm that tries to optimize the 
parameters of the model until there is a combination that 
best describes the observed pattern. This last property is 
very important because it is possible to train a HMM with a 
set of voice sounds, and then use the model obtained to 
detected if another sound has voice. 

This was just a glimpse of what HMMs can do. For 
implementation details and further reading please refer to 
[10,11]. The HMM Toolbox [7] is a complete 
implementation of HMM with many related algorithms and 
solutions. 

SOLUTION 
To adapt HMM for singing voice recognition a prototype 
was implemented using MatLab following the ideas 
described in [5] (see related work). Two classes of HMM 
were created, one for singing voice and other for instrument 
only sound. Following the diagram in figure 1 there were 
several steps for the implementation. 

The first step was to create a database of sounds. Several 
two second samples were taken from different songs and 
from different artists. Half of the samples had voice. The 
samples had a quality of 44100Hz, 16 bits, Mono. The 
entire algorithm works only on a single channel but would 
be trivial to replicate it for stereo sound.    
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After reading the samples to the system, the second step 
was to divide the samples in small frames and convert them 
to MFCC vectors using the Auditory Toolbox[13]. The 
samples were divided in 100 frames per second. For each 
frame a vector of 13 Mel-frequency cepstral coefficients 
was obtained, thus resulting in a matrix D of 13 by 200, for 
each two second sample. 

The third step was the training of the two HMMs using the 
MFCCs. To implement the HMMs the prototype uses the 
already referred HMM Toolbox [7]. The HMMs were 
defined using as input D. Each column of D is considered 
an observation and is composed by thirteen coefficients. 
Since sound is a continuous signal the possible values of the 
coefficients are not discreet symbols of a finite alphabet, for 
that reason a Gaussian Mixture model with M mixtures to 
represent Q possible states. M and Q are left open as 
parameters. Finally the HMM is generated using an 
approximation process described in the last section with 
1000 iterations. 

Having the two HMMs constructed the fourth step is to 
evaluate a music and detect voice segments. The main idea 
is to read the music and convert it into MFCC vectors. Then 
take the resulting 13 by n matrix and divide it into segments 
of size S (the S used was 40 in all tests). Then use this data 
to compute the likelihood probability of it belonging to the 
vocal HMM class or non vocal. The segment will be 
classified as belonging to the class with higher probability. 

EVATUATION AND RESULTS 
To evaluate the method several samples were manually 
classified with voice and no voice segments. To do this in 

real time, a small application was built where a person 
would listen to a song and would push a button whenever 
the singer started and ended singing. This is a very fast 
method to obtain classified data although it has some errors 
and possible delays associated with the person’s reaction 
time. Using the classified songs it was possible to make 
comparisons between the proposed algorithm results and 
the manual result resulting in the graph seen in figure 5.  

Several tests where made changing several parameters of 
the HMMs, first of all the HMMs where trained using only 
samples from the same band of the music that it would be 
tested. Then they were trained using all the samples. Finally 
the parameters: M the number of Gaussian mixtures and Q 
the number of states, were tested with different values. The 
success rate of each approach can be seen in table 1. 

% Q 

Train Samples M 1 4 8 16 

Same band  
from test 

2 82.4 82.3 81.2 80.8 

10 83.1 82.8 77 76.6 

All bands 
2 80.3 80.4 81.4 76.4 

10 81 80.1 78.1 79.4 

Table 1. Success rate with different parameters. 

The results had a variation of around ±5%. The tests had a 
slightly better result when the training set is composed of 
samples from the songs being tested. The other group of 
samples also had samples from the song being played but 

Figure 5. Singing voice classification. The dark areas in the second graph represent 
voice detect by the algorithm. The third graph shows a manual voice classification 

done by a person. The last graph shows the differences. In this 60 second example the 
success rate was 90%. 



 

 

had also more different music bands.  For this reason the 
transition probabilities probably become more diluted in the 
HMM resulting in worst results. The best results are 
obtained using fewer states and fewer Gaussian Mixtures. 
There are not large differences between the results but it is 
safe to say that using between 1 and 4 states with 2 to 10 
Gaussian Mixtures is a good parameter solution.  

CONCLUSION 
With this work it is possible to conclude that a solution 
based on HMM using MFCCs as classifiers is a valid 
answer to detect singing voice in music. The results show a 
high degree of success comparing them with similar results 
from other authors (around 80% for [4] and [5]). This 
implementation may need additional tuning to make 
detections in other types of music but taking into account 
the scope defined in the introduction the results were 
satisfactory. 

For the future it would be necessary to extend the 
evaluation with a larger set of samples to train the models 
and to test the system. One idea would be to feed the results 
back into the model when the degree of confidence in the 
system starts getting higher. To improve the system it 
would be necessary to cross the detected segments using 
HMMs with other types of detectors based on energy, pitch 
or harmonic frequency. 

Finally using the detected singing sections it is possible to 
build interactive multimedia applications that react to a 
given music, as said in the example described in the 
introduction.  
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